Problem description
Jasio kupił sobie nowiutki zbiór liczb naturalnych. Szybko obliczył najmniejszą wspólną wielokrotność liczb w tym zbiorze. Zaczął się teraz zastanawiać nad tym ile liczb mógłby dodać do swojego zbioru, aby NWW nie uległa zmianie. Pomóż mu!
Napisz program, który: wczyta zbiór liczb Jasia, wyznaczy maksymalną liczbę liczb, które można dodać do zbioru, aby NWW nie uległa zmianie i wypisze wynik na standardowe wyjście.
Wejście
W pierwszym wierszu wejścia znajduje się jedna liczba naturalna N, określająca moc zbioru Jasia. W drugim (ostatnim) wierszu wejścia znajduje się ciąg parami różnych N liczb naturalnych Ai poodzielanych pojedynczymi odstępami – liczby w zbiorze Jasia.
Wyjście
W pierwszym (jedynym) wierszu wyjścia powinna się znaleźć jedna liczba naturalna – reszta z dzielenia przez 109 + 7 maksymalnej liczby liczb, które można dodać do zbioru, aby NWW liczb ze zbioru nie uległa zmianie.
Ograniczenia
1 ≤ N ≤ 50 000, 1 ≤ Ai ≤ 109.
Przykład
Wejście | Wyjście | Wyjaśnienie |
|
|
NWW zbioru Jasia ({1, 4, 6}) jest równe 12. Po dodaniu elementów 2, 3 oraz 12 otrzymujemy zbiór {1, 2, 3, 4, 6, 12}, którego NWW jest również równe 12. |